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Preface: Objective and Overview
of the Book

The term “big data” is fairly new in power systems. Yet, its application and

methodologies applied to massive data sets were developed a long time ago
for electricity load consumption forecasting. The recent developments in mon-

itoring, sensor networks, and advanced metering infrastructure (AMI) dramat-

ically increase the variety, volume, and velocity of measurement data in
electricity transmission and distribution networks. Moreover, the progress in

advanced statistics, machine learning (ML), database structure, and data min-

ing methodologies marked by increasing the availability of open source plat-
forms for data analytics is transforming the power system area and turning

utilities into data-driven enterprises.

In order to discuss the big data analytics applications for power systems, this
book brings together experts from all organizations and institutions impacted

including academia and industry. We focus on rapidly modernizing monitor-

ing and analytical approaches to process the high dimensional, heterogeneous,
and spatiotemporal data. This book discusses challenges, opportunities, success

stories, and pathways for utilizing big data value in smart grids. The dramatic

change in the field of scientific computing, microprocessors, and data commu-
nications is a burden for electric utilities to understand, follow, and adopt the

advanced statistics, computer science, and mathematics concepts. Today’s util-

ity engineers need to be more informed of the basic concepts and applications
for massive field data analysis. This book’s goal is to facilitate the transition to

data-driven utilities by providing a comprehensive view on big data issues,

methodologies, and their various applications in the power systems area.

Much like the authorship of the chapters in this volume, the intended audience

for this book extends from researchers, graduate students, and faculty working
in electricity networks and smart grid area to industrial scientists, engineers,

data analysis experts, and software developers who are working on electricity

networks and advanced technologies for smart grids. This book is also useful
for people with less technical expertise in scientific computing. We expect that

the reader will have some proficiency in power systems fundamentals and that
xv



he/she has had at least one elementary course in statistics. This book can also be

useful for senior undergraduate students who have passed courses on power
systems.

This book has three sections as follows: I. Harness the Big Data From Power Sys-
tems, II.Harness the Power of Big Data, and III. Put the Power of Big Data Into Power

Systems. The opening section is an overview of the opportunities and challenges

for data-driven utilities in the era of distributed technologies and resources such
as Internet of Things (IoT), flexible demand, distributed generation, and energy

storage. The second section reviews research trends on ML and artificial intel-

ligence for the power system industry. The final section provides examples of
the advanced data analytic applications for the grid operation. Taken together,

these three book sections provide an overview of the entire cycle of data analysis

in power systems. The book begins with the utility enterprise structure, business
model, and privacy issues, then delves into research trends in advanced data

analysis, and ends full circle with real-world examples of actual applications

of data analytics used daily by utilities.

SECTION ONE: HARNESS THE BIG DATA FROM POWER
SYSTEMS

To provide a big picture for electric utilities, this section describes the current

and future trends for data mining and data processing in electric utilities.
The move toward data-driven utility is possible by a fundamental shift in orga-

nizational culture and business processes, as well as data-related technology

and practices. Moreover, enriching electric utilities with data requires interop-
erability across all operational and enterprise units and recognition that main-

taining the data privacy, security, and the seamless data flow is highly

challenging. The interoperability in holistic data-driven utilities expands to cus-
tomers through their engagement and continues demand-sidemanagement for

higher reliability, service quality, and efficiency. Aligning customers’ needs and

expectations with utilities’ business drivers will shape the roadmap to generate,
process, and access the data in utilities.

The information and communication technology (ICT) platform is at the heart
of the roadmap to data-driven utilities which supports the data flow from cus-

tomers all the way to the transmission and generation operators. Utilities made

aggressive steps toward smartness by adopting the distribution automation
(DA) solutions followed by AMI platforms. DA and AMI made a revolution

in grid operation. However, the data flood from DA and AMI has created a

nightmare for the utilities’ ICT infrastructure. A holistic approach for data-
driven utilities is needed to openly discuss and clarify the foundational ICT

requirements to serve all functions of the electric grid.
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Becoming a data-driven utility is inevitable in the age of internet, cloud com-

puting, smart phones, and distributed resources. The advanced data analytics
make continuous innovation possible by unlocking insights never seen before.

The ML, deep learning, and statistical inference are tools that help utilities to

keep up with the torrent of data from different resources. Advanced big data
analytics provide estimation, predication, diagnostics, and prognostics conclu-

sions from historical and real-time data flows. As more data becomes available

to utilities over time, the ML algorithms provide more refined insights on grid
operation planning. However, the synergies between ICT networks, grid com-

ponents, operators, and customers run the power system into a complex giant

for ad hoc data-driven approaches and policies. This section of the book
endeavors to deliver the message that a holistic approach based on a founda-

tion of open architecture and standards will ensure the open flow of data and

interoperability between devices, systems, databases, and people in order to
make data-driven utilities. The all-inclusive approaches to generate, transfer,

and handle data also bring tremendous opportunities to break traditional bar-
riers in utility organizations for delivering safe, reliable, and affordable power

to their customers.

Chapter 1 by John McDonald introduces these concepts through three case
studies. He explores the value of a data-driven utility in terms of asset manage-

ment and safety, the fundamentals of standards and interoperability, and the

enterprises of increased visibility into the transmission and distribution net-
work. The chapter illustrates the holistic data-driven utility and its fundamental

business drivers to establish information and communications technology

foundation, human resource, customer relation, and data-oriented organiza-
tional cultural data in the grid operation and planning.

The data-driven utilities now face greater and more frequent risk of intrusion
and/or interruption due to the fact that these networks are merging with cyber

networks, resulting in sociotechnical and cyber-physical systems that are creat-

ing an infrastructural IoT where all grid components can interact and collabo-
rate. Integrating cyber components into the electric grid also means an

incredible increase in security vulnerability and interdependencies among

infrastructure components that create the risk of cascading effects after attacks.
Moreover, the enhanced observability of the grid thanks to the smart meters’

high granular data is making more customers concerned and uncomfortable

about data privacy. Carol L. Stimmel discusses state-of-the-art data privacy
and security in Chapter 2. She lists a number of actual cases for cyber security

attacks on the grid and explains the impact of data-driven approaches in

enhancing the data security and privacy. Data-driven utilities function as much
more than the operators of the physical grid; utilities are also responsible for

massive enterprise systems with financial information, customer data, and a

growing network of digital operations under human control. Thus, security
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strategies must become more nuanced and complex, and should include pri-

vacy and other internal information technology controls.

The big data era is changing the utility workforce paradigm. Several major util-

ities are adding more software developers and data scientists to their R&D and
operating groups, as well as power system experts. The power of data in inno-

vation is seen in more smart grid projects and AMI implementations. Some of

these projects applied Big Data and Analytics even without adding any new sen-
sors, demonstrating the power of knowing more about what information was

already available to the utility through the SCADA systems. The utility innova-

tion movement came from the foresight that discarded data may prove useful.
This includes data discarded during the process of developing an analytics strat-

egy, including predictive maintenance programs, thought to be valuable as the

design phase began, even though there was no known need for all of the data at
the time. Analytics has moved from replicating alarm limits already available,

to deep learning for customer behavioral studies and cognitive computing for

renewable adoption optimization, as well as numerical methodologies for
dynamic electricity market forecasting. Jeffrey Katz from IBM contributes

Chapter 3, “The Rule of Big Data and Analytics in Utilities Innovation” that

explains how data analytics pave the ground for innovation in utilities by point-
ing to a number of successful projects in different utilities.

To harvest the advantages of big data, utilities need to employ platforms that
can handle high volume, velocity, and volatility of the data. There are commer-

cial and ready-to-use platforms that serve the big data community. It is time for

utilities to take the lead in shaping power systems-specific data platforms. The
in-memory calculation engine and parallel computing framework, Hadoop/

MapReduce and Spark, are ready for handling an extremely large scale of data-

set; on the other hand, the stream processing engine, Storm, Streams, and Spark
Streaming are built to analyze data in motion and act on information as it is

happening. The architecture of big data platforms includes data integration,

warehousing, analytics, and combining the demand of smart grids to put for-
ward a set of frameworks such as the Apache Hadoop ecosystem which has

excellent computing ability and can adapt to various business requirements.

Chapter 4 “Frameworks for Big Data Integration, Warehousing, and Analytics”
by Feng Gao discusses different tools and techniques to support the growth of

smart grid and big data with high performance computing, with a focus on the

platform, data integration, warehousing, and analytics that are particularly
adaptive to handle a variety of characteristics of energy industry data within

the data lifetime cycle.
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SECTION TWO: HARNESS THE POWER OF BIG DATA

This theory-oriented section focuses on big data analytics. In particular, it dis-

cusses ML and data mining algorithms, methods, and implementation that are
adaptable for data visualization, representation, exploratory analysis, regres-

sion, and pattern recognition in power systems. The objectives of this section

are twofold. On one hand, both classical and status quo ML paradigms are
reviewed and discussed, motivating the proper usage of traditional super-

vised/unsupervised learning tools and the recent developments of semi-

supervised learning, multitask, multiview learning, sparse representation, deep
learning, etc., for various tasks in power systems. The hope is that the dramatic

progress in ML can be fully harnessed to reform the solution of power system

state estimation, load forecasting, event detection, and structure identification.
On the other hand, the reversed direction, i.e., the challenges and new prob-

lems brought by power system data to ML, is discussed. Similarly to the impact

of computer vision, natural language processing, speech recognition, or robot
control on the advancement of ML, it is expected that the complexity of the

interconnected system, the behavior-related data generating process, as well

as the unique sensing and measurement techniques in power systems, would
inspire novel theoretical and methodological results for ML.

It is worth pointing out that in this section, the term ML is used in a broader

sense, generally referring to a task to improve some performancemetric, by exe-
cuting a series of computation (algorithm) with some training experience (in

the form of collected sensor measurement, expert knowledge, survey entries,

etc.). Lying at the crossroads of statistics, computer sciences, artificial intelli-
gence, and applied mathematics, the ML methods discussed in this section

deserve a comprehensive description from diverse perspectives, including,

but not limited to, their underlying probabilistic assumption, theoretical/
empirical generalization performance, model selection (hyper-parameter selec-

tion), computational complexity, numerical implementation, etc. Although a
mathematically rigorous treatment of the above topics is not the focus of this

book, useful references are provided to interested readers. More often than not,

the proper usage of the state-of-the-art ML algorithm, or a desire to advance
ML driven by power system applications, would surprisingly progress both

research fields.

More specifically, Chapter 5 starts with a brief discussion of classical supervised
and unsupervised learning paradigms. The focus is not to give an extensive

review of the field, which is impossible due to its many ramifications, but rather

to equip the readers with popular approaches for regression, classification,
dimension reduction, among other fundamentals. The chapter then focuses

on two important issues, feature engineering and model selection, in some

depth to demonstrate the proper usage and systematic tuning of those
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off-the-shelf ML tools. The rest of this chapter is devoted to the introduction of

some recent schemes of ML that seem promising for power system data analysis
applications. The topics discussed include semi-supervised learning, multitask

learning, transfer learning, multiview learning, information representation, etc.

Following the discussion, Chapter 6 provides a case study on the use of the clus-

tering algorithms for enhanced visibility of the electrical distribution system.

Based on smart meter data of more than 30,000 loads in the city of Basel, Swit-
zerland, the authors demonstrate the power of exploratory data analysis using

unsupervised learning methods, which successfully reveals hidden structure,

property, and geographical consistency from the measurement data. The rich
information mined from this analysis can be leveraged by DSOs to support

the grid operation.

The rest of the chapters in this section discuss in detail several advanced ML
methods for power system applications. Motivated by the unprecedented high

volumes of data made available by the growth of home energy management
systems and AMI, Dr. Mocanu et al. in Chapter 7 present the deep learning

framework to automatically extract knowledge and use it to improve grid oper-

ation. The chapter starts with a moderate introduction to the most well-known
deep learning concepts, such as deep belief networks and high-order restricted

Boltzmann machine, followed by a discussion on their theoretical advantages

and limitations, such as computational requirements, convergence, and stabil-
ity. As a concrete application, two case studies involving building energy pre-

diction using supervised and unsupervised deep learning methods are

presented. The chapter concludes with a glimpse into future trends highlighting
some open questions as well as new possible applications.

Chapter 8 “Compressive Sensing for Power System Data Analysis,” focuses on

the applications of another state-of-the-art ML framework, namely compres-
sive sensing-sparse recovery (CS-SR), which has enjoyed great success in other

fields like bio-engineering, signal processing, and computer vision, among

others. The adaptation of CS-SR in smart power networks monitoring, data
analysis, security, and reliability should expect similar successes. The sparse

nature of the electrical power grids, as well as electrical signals, can be

exploited to introduce alternative mathematical formulations to address some
of the most challenging system modeling, that of sparse identification prob-

lems in power engineering. The chapter begins with a concise presentation on

the theoretical and technical background of CS-SR. Next, the discussion
moves to innovative CS-SR applications in smart grid technology. Finally,

the CS-SR techniques are explored in depth to propose novel methods for dis-
tribution system state estimation (DSSE), single and simultaneous fault loca-

tion in smart distribution, and transmission networks, and partial discharge

(PD) pattern recognition.
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The rapid advancement of sensing and measurement technology in power sys-

tems has given researchers access to real-time records of system dynamic
states. In particular, development of phasor measurement unit (PMU) tech-

nology has allowed the continuous monitoring of the transmission line

and the connected power systems, and can be complemented with utility
monitoring devices, smart meters, and insulation monitoring units to build

a thorough picture of the whole grid structure, health, and dynamic behavior.

The data collected from these real-time measuring procedures is usually in the
form of time series (TS). Hence, in Chapter 9 of this section, Dr. Gian Antonio

Susto et al. present an overview about the most recent ML techniques used for

TS pattern recognition. The chapter first summarizes existing methods of TS
classification and highlights the issue of computational complexity, and then

provides discourse on the various dimension reduction and numerosity reduc-

tion techniques for a more parsimonious and informative representation of TS
data. The chapter concludes with a comprehensive comparison of diverse clas-

sification methods in terms of their underlying assumption, performance,
computational complexity, flexibility for decentralized execution, and other

categories.

SECTION THREE: PUT THE POWER OF BIG DATA INTO
POWER SYSTEMS

This final section of the book presents the data-driven approaches unique to the

design, operation, and planning of utilities. Moreover, data-driven utilities

need new business models for knowledge extraction from data. Some examples
are analysis of the demand response (DR) potential of grid users, big data pre-

processing from grid sensors, large-scale simulation of electricity markets, and

predictive maintenance of electrical equipment. Forecasting of real-time and
day ahead market price, load, and renewable generation TS present huge busi-

ness value for utilities’ stakeholders and customers. The big data applications in

the distribution and transmission networks are mainly driven by two objec-
tives: firstly, to increase the monitoring and situational awareness capability

and develop fast decision-making methods for operators, and secondly, to

implement predictive active management strategies that take advantage of flex-
ibility from various technologies in the electricity supply and demand such dis-

tributed energy resources, energy storage, and DR.

However, exploiting the full potential of big data in utilities is challenged by

lack of statistics and data analytics knowledge in utilities workforce. Moreover,

the “ready-to-use” and industry-level ML tools and solutions are not wildly
available to utilities which may increase the learning curve and utilities’ mod-

ernization time. This section provides a collection of modern data-driven
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solutions such as distributed learning and optimization, spatial-temporal

modeling of TS, data reduction, assimilation, and visualization methods for
classic power system problems including state estimation, topology detection,

fault detection, and load disaggregation. The author hopes this book brings

more interests in ML and deep learning applications in power system operation
and planning.

Chapter 10, “An Overview of Big Data Application in Power Transmission and
Distribution Networks” provides a comprehensive overview of data-driven

trends such as feature extraction/reduction and distributed learning to extract

knowledge from the power system and market data. Furthermore, it describes
the data-driven techniques for dynamic and steady-state analysis and control of

distribution and transmission systems.

In Chapter 11, “On Data-Driven Approaches for Demand Response,” Akin Tas-
cikaraoglu presents a detailed investigation of the applications and benefits of

big data analytics in demand-side management or DR and their roles in provid-
ing higher saving potential for both system operators and end users. He also

shows some examples of real-world implementations of DR.

Chapters 12 and 13 are devoted to topology detection. Knowledge of the exact
topology, the open or closed status of switches and circuit breakers throughout

the network, is essential for all aspects of the power system operation.

Chapter 12, “Topology Learning inRadialDistributionGrids” presents an acquis-
itive algorithm to learn the grid topology using voltagemeasurements collected at

a subset of the buses in power distributionnetworks. Chapter 13, “Grid Topology

Identification via Distributed Statistical Hypothesis Testing,” proposes an algo-
rithm based on the identification of Markov random fields (graphical models)

and conditional correlation properties that characterize voltage measurements

in power distribution networks. It shows the correlation of voltage magnitude
measurements in a radial distribution feeder with the topology of the grid.

In Chapter 14 entitled “Supervised Learning-Based Fault Location in Power
Grid,” Dr. Livani, Hanif suggests an SVM network for the classification, identi-

fication, and localization of faults in a complex power transmission grid. Based

on the high-resolution/high-volume data made available by the proliferation
of intelligent electronic devices (IEDs) in smart grids, this method is able to

achieve efficient and accurate fault diagnosis for system operators. The lesson

learned from this chapter, in particular, is to combine the effort to modify exist-
ingML algorithms with signal processing, and to increase our knowledge about

the system itself for handling new problems arising from the complex power

system and grid.

To introduce cutting edge tools, packages, and information technology for

readers who are interested in developing real-world power system data analysis

xxii Preface



platforms, the authors of Chapter 15 investigate the usage of recent big data

tools and methods in the context of power distribution networks. This chapter
illustrates the use of MapReduce functions within R or Java, which is combined

with commercial distributed analytics database, the application of affinity

graphs for representing collaborative filters, a performance comparison to con-
ventional database concepts, and many other features.

Being able to forecast energy resources, load patterns, and system state are key
features of next-generation smart grid technology. An accurate predictive plat-

form would greatly benefit the planning, scheduling, and unit commitment in

terms of both efficiency and security. Chapter 16 entitled “Predictive Analytics
for Comprehensive Energy System State Estimation” provides an overview and

a thorough discussion on predictive ML methods for wind, solar energy fore-

casting, load prediction, power system state estimation, etc. The ML tools
included in the chapter range from classical regression, TS analysis, to kernel

method such as support vector regression and Gaussian process.

Finally, Chapters 17 and 18 are devoted to a particular yet important applica-

tion of big data analytics method to smart grid, namely energy disaggregation

or nonintrusive load monitoring (NILM). In essence, the goal is to estimate the
power usage of individual appliances from an aggregate electricity consump-

tionmeasurement. Provided withmore precise information including itemized

energy consumption profiles, both end users and grid managers can improve
their utility in terms of energy consumption prediction, demand side manage-

ment, and user segmentation. Chapter 17 surveys the existing literature for

background, ML methods, and possible applications of energy disaggregation,
while Chapter 18 discussed the issue of privacy in the energy disaggregation

framework. Both chapters are witness to the combination of cutting edge ML

methods and a deep understanding of the system characteristics for the
advancement of smart grid technologies.
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CHAPTER 1

A Holistic Approach to Becoming
a Data-Driven Utility

John D. McDonald
GE Energy Connections-Grid Solutions, Atlanta, GA, United States

CHAPTER OVERVIEW

The ultimate goal of harnessing big data is to improve customer service and achieve enterprise busi-

ness goals while increasing the reliability, resiliency, and efficiency of operations. Thus, business
drivers should dictate data needs and the technology roadmap to achieve ongoing improvements

in these areas. A data-driven utility should first identify its fundamental business drivers to under-

stand precisely what intelligence is needed for operations and the enterprise and what specific tech-

nology supports the creation of intelligence and value, both for current business challenges and for
future business needs and technology functionalities. Intelligence, and automation, relies on a two-

way, integrated communication system based on standards; thus a utility must first develop a

“strong” grid by establishing an information and communications technology foundation based
on an open architecture and standards. This first step requires that information technology and

communications groups work together to understand and support the functional requirements

such as network response requirements, bandwidth, and latency, of each disparate data path—from

sensor to end user—for current and future systems and applications. Then a data-driven utility
should develop a “smart” grid, which requires the convergence of information technology and oper-

ations technology and their respective staffs—the beginning of an operations- and enterprise-wide

cultural shift to holistic utility management that focuses on value creation and eliminates organi-

zational silos. On the technology side, integration of data-producing devices and systems precedes
automation. Determining substation automation applications relies on observing the behavior of

data over time (daily, seasonally) and diverse conditions (weather patterns). On the organization

side, all operations and enterprise groups should cooperate to identify their data needs to create a

data requirements matrix. Information and operations technology personnel can then determine
the least number of platforms and the most efficient paths to route data from device to end user,

taking security into account. Access and authentication rules ensure that only the right person gets

the right data at the right time. A key concept in a data-driven utility is that every internal stake-
holder who can create value from data should have secure access to that data. Operational data

is routed to the control center in real time, while nonoperational data is extracted from intelligent

electronic devices, concentrated and sent across the operations firewall to be stored and processed in

a data mart for on-demand access by enterprise groups and their applications. Three case studies
illustrate the value of a data-driven utility in terms of asset management and safety, the fundamen-

tals of standards and interoperability, and the enterprise value, in dollars, of increased visibility into

the transmission and distribution network.

Big Data Application in Power Systems. https://doi.org/10.1016/B978-0-12-811968-6.00001-2

3

Copyright © 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-811968-6.00001-2
https://doi.org/10.1016/B978-0-12-811968-6.00001-2
https://doi.org/10.1016/B978-0-12-811968-6.00001-2


1 INTRODUCTION

In this digital age, power utilities must harness data to achieve the operational

and enterprise efficiencies, insights, and flexibility to thrive amid emerging
technologies and disruptive market forces. The question is not whether to

become a data-driven utility, but how to do so. The opportunities and chal-

lenges are many. In the simplest terms, harnessing data in a comprehensive
manner will require a transformational journey that will remake every power

utility that undertakes the challenge. The process of becoming a data-driven

utility requires a fundamental shift in organizational culture and business pro-
cesses as well as data-related technology and practices. The desired result is not

limited to the creation of a more reliable, resilient, and efficient grid. This trans-

formation should also enable enterprise flexibility that supports new utility
business models. Becoming a data-driven utility is an endeavor in which phi-

losophy and technology go hand in hand.

The philosophy piece is simple and three-fold. First, data should drive improve-
ments in a power utility’s raison d’être. The ultimate, traditional goal of a power

utility is to serve customers by delivering power safely, efficiently, and afford-

ably. We are likely to see this fundamental mandate broaden to include cus-
tomer service options, enabled by data. Harnessing data can support

improvements in customer service, enhance customer and stakeholder value

and increase the reliability, resiliency, and efficiency of operations. This is true
whether a utility is cooperatively owned, municipally owned, or investor

owned. Second, the organizational and technological transformations required

to become a data-driven utility are so far-reaching that only a holistic approach
will serve. Third, and most broadly, current and near-term societal and market

trends pose a challenge to utilities’ historic, regulated monopoly business and

regulatory model. If a utility wants to determine its own fate, it must be proac-
tive. Data is the new enabler of value and its opportunities and challenges must

be actively embraced with a sense of urgency.

2 ALIGNING INTERNAL AND EXTERNAL
STAKEHOLDERS

One fundamental concept in becoming a data-driven utility is that every inter-

nal stakeholder who can create value from data should have secure and timely
access to that data. The very process of identifying useful data, collecting, pro-

cessing, and presenting it or making it accessible on-demand will drive cultural

and business process change throughout a utility. Creating a data-driven utility
requires cooperation and coordination across all operational and enterprise

units and the recognition that silos are obsolete legacies of past practices.
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One should not underestimate the fundamental transformation unleashed by

pursuing the goal of becoming a data-driven utility.

This observation holds true for external stakeholders as well. On the customer

side, data has also become a valuable commodity. Customers are no longer pas-
sive ratepayers. Their energy use data belongs to them and, increasingly, they

expect value for it. Public utility commissions recognize that customers own

their energy use data, that utilities must secure it, and that the individual cus-
tomer has the prerogative to say how that customer-specific data is used or

shared. Whether utilities use data to create service options with value to both

utility and customer may well determine their future success as an enterprise.
Today, emerging technologies, third parties, and disruptive market forces

abound, seeking to provide utility customers with value and service options

based on their energy use data. For utilities, data has become not only the
means to thrive but also the means to survive.

3 TAKING A HOLISTIC APPROACH

A holistic, methodical approach to becoming a data-driven utility has several

common, recognizable steps, though the outcome for any individual utility will
likely be unique, due to its existing customer base, business model, and legacy

infrastructure. In this introductory chapter and overview of the topic, we will

examine the implications of a holistic approach, the technology-related phases
it requires, and connect the dots between data-producing sensor and data-

reliant end user. A brief synopsis of three case studies will illustrate many of

these points.

A holistic approach to becoming a data-driven utility literally takes everything

into account. It views transmission and distribution as a single integrated
entity. It encompasses the operations and business of delivering power to cus-

tomers in a manner that achieves customer engagement and satisfaction based

on increased system reliability, resiliency, and efficiency. Built on a foundation
of open architecture and standards, a holistic approach ensures interoperability

between devices, systems, and databases. It enables value creation at opera-

tional and enterprise levels. It enables forward and backward compatibility
to derive full value from current and future investments in technology while

maintaining the value of legacy equipment. In terms of an end-to-end system,

a holistic approach provides a means by which all data-producing devices—
increasingly, nearly every device in a T&D system—can be mapped to commu-

nication channels and networks with the appropriate response requirements,

routed to both operations and enterprise sides of the organization, and pre-
sented and/or made accessible on-demand to the right people in the right time

and place for value creation.
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A holistic approach aligns customer needs and expectations with utility busi-

ness drivers and depends on a technology roadmap for gridmodernization that
supports this alignment. In terms of utility culture and organization, a holistic

approach eliminates silos and demands utility-wide cooperation and coordina-

tion to avoid redundant systems and costs. Thus it provides the basis for pru-
dent, well-vetted investments that will create customer and stakeholder value

and benefits that increase over time, meet future needs, and are likely to win

regulatory approval.

In an era in which the utility business model requires review and transforma-

tion and digital technology produces an increasing granularity, quality, and
quantity of data, a holistic approach to becoming a data-driven utility offers

the richest opportunity for success.

4 “STRONG” FIRST, THEN “SMART”

Aligning customer needs and expectations with utility operational and business

drivers should dictate how data is generated, collected, stored, processed, pre-
sented, or accessed, and how actionable intelligence is applied. A data-driven

utility should review its current andmid-term operational and business models

and identify its customer needs and fundamental business drivers. This will
help in understanding precisely what actionable intelligence—and, thus,

data—is needed for both operations and the enterprise to meet its self-

determined goals of improving customer service and pursuing value creation.

To optimize current practices and enable future flexibility in reaching ope-

rations and enterprise goals, a utility must first develop a “strong” grid before

pursuing a “smart” grid. This can only be achieved by establishing an informa-
tion and communications technology (ICT) foundation based on open archi-

tecture and industry standards. The development of operational intelligence
(and automation) and enterprise value relies on a two-way, standards-based,

integrated communication system [1].

This first step requires that information technology (IT) and communications
groups work together to understand and support the functional requirements

(response requirements, bandwidth, latency) of each disparate data path—

from sensor to end user—for current and future systems and applications. This
approach requires organization-wide cooperation, which is no small feat.

Enabling this fundamental cultural shift requires executive leadership, poten-

tially third-party facilitation, and incentives that reward personnel for
organization-wide and customer value creation rather than for individual staff

and bailiwick-level achievements.

A foundational ICT platform that links all operational and enterprise aspects

of a utility is a prerequisite for enterprise-wide data management. This ICT
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platform should support full information flow, data management and

analytics, and grid monitoring and control. It also comprises the basis for
future functionalities that potentially include new consumer services, the

integration of distributed energy resources (DERs) and other, yet-to-

be-determined needs. The efficacy of this phased approach—seeking a
“strong” grid before a “smart” grid—has been affirmed by lessons learned

from the stimulus-funded work accomplished under the American Recovery

and Reinvestment Act (ARRA) between 2009 and the present. One simple
example illustrates this point.

ARRA funding opportunities allowed many utilities to adopt advanced meter-
ing infrastructure (AMI). Some of these utilities took a traditional approach by

assigning AMI implementation to their metering group alone. As these same

utilities later contemplated the implementation of distribution automation
(DA), they compounded their original mistake by assigning DA to a distribu-

tion engineering group in operations [2].

The direction is positive, but the execution is flawed. DA is the next logical step

in grid modernization after AMI and it has themost attractive, stand-alone (i.e.,

nonsubsidized) business case. But these utilities are finding that their earlier
decisions on data networks and IT infrastructure to support AMI do not support

DA integration or that implementing DA requires a costly, disruptive work-

around. In a holistic approach to data management, all operational and enter-
prise units would openly discuss their future direction and related projects and

set foundational ICT requirements to serve them all. This fundamental step

would eliminate redundant efforts and costs—and the creation of two separate
data streams—because two or more systems in this example share a need for a

service territory-wide communication network. Extrapolate this single example

across a utility’s many networks, systems, and applications and extend it into
the future along a well-plotted technology roadmap. Although it requires

daunting cultural change and significant up-front time and effort, a holistic

approach ultimately saves time, effort, andmoney and provides ever-increasing
benefits to a future-facing, data-driven utility. In contrast, as this example illus-

trates, a fragmented, piecemeal approach is likely to result in stranded assets or,

at best, time-consuming, costly workarounds at each step in a technology
roadmap.

Once a strong ICT foundation has been established, a data-driven utility can

proceed to develop a “smart” grid and to map data from sensor to end user.
This next step requires the convergence of IT and operations technology

(OT) and their respective staffs—the beginning of an operations- and
enterprise-wide cultural shift to holistic utility management that focuses on

customer-stakeholder-centric value creation and eliminates organizational

silos and siloed thinking.
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Guidelines for a holistic approach to becoming a data-driven utility:

• Align internal and external stakeholders.

• Think in terms of holistic solutions across the organization.

• Build a strong grid first, with robust ICT performance, then build a smart one.

5 INCREASING VISIBILITY WITH IEDs

As readers know, sensors, processing, and the visibility they produce have been

applied to the transmission system for some time. The real growth in the need

for visibility is downstream in the distribution system, where data-producing
sensors and devices in the form of intelligent electronic devices (IEDs) are pro-

liferating. The proliferation of IEDs in the distribution system is enabling util-

ities to treat T&D as a single entity and is a major enabler for the transformation
to a data-driven utility. Yet a lack of visibility in the distribution system remains

widespread; for example, only two-thirds of the distribution substations in the

United States currently have automation.

IEDs can take the form of standalone sensors or they can be data-producing

substation protection and control equipment such as protective relays, load
tap changers, and voltage regulators. They produce two streams of data: oper-

ational and nonoperational. Operational data is routed in real time to opera-

tors in control centers for monitoring and control purposes (see Fig. 1, Types of
data: “operational” data). Nonoperational data can provide significant insights

•  Data that represents the real-time status,

  performance, and loading of power system
  equipment
•  This is the fundamental information used by
   system operators to monitor and control the
  power system
Examples:
  • Circuit breaker open/closed status
  • Line current (amperes)
  • Bus voltages
  • Transformer loading (real and reactive power)
  • Substation alarms (high temperature, low
  pressure, intrusion)

Types of  data: “operational” data

FIG. 1

Types of data: “operational” data. From J.D. McDonald, Powerpoint presentation, Enterprise Data

Management, slide # 5.
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